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Introduction

Based on anatomical measurements, it is expected that most neighbouring 
pyramidal neurons in the cortex are not connected, and those that are will be 
weakly connected (Braitenberg and Schüz 1998). Indeed, most connections between
neurons in L2/3 are weak (Song et al. 2005; Perin, Berger, and Markram 2011; 
Cossell et al. 2015). However, there are infrequent strong connections that link 
neurons with similar response properties (Ko et al. 2011; Cossell et al. 2015).

Spike correlations reflect that underlying structural connectivity distribution by 
exhibiting very small average magnitudes, even for neurons with similar receptive 
fields (Ecker et al. 2010), which arise due to the combined effect of the restricted 
extend of common inputs and the action of inhibitory neurons (Ecker et al. 2010; 
Renart et al. 2010).

It is still an open question whether a description based on correlations observed in 
spontaneous cortical networks can help to characterize their inherent structure. We 
expect, though, that some structure is imprinted into the network either through 
common wiring rules (Yoshimura, Dantzker, and Callaway 2005; Zador 2019) or 
through the combined effect of natural input statistics and contextual, or “internal 
state”, information (Ringach 2009), that will manifest at the level of spontaneous 
neuronal correlations. A way to examine the extent to which this is true is to 
examine the network’s topology under multiple scales of correlation and compare it 
to that of otherwise equivalent reference networks that either lack any structure or 
display regular topology (Watts and Strogatz 1998). So far studies of network 
topology have been limited to small-scale in vitro studies, that may have missed 
network structure that manifests itself when looking at larger topological scales.

The range and distribution of inter-neuronal spike correlations has been a matter of 
controversy, in part due to the influence of the firing rate on the chosen correlation 
measure (Cohen and Kohn 2011). For this reason, the correlation measure has to be 
chosen carefully to take into consideration of the underlying characteristics of spike 
trains. For relatively long time-series, Spike Time Tiling Coefficient (STTC) is 
superior to commonly used measures, including Pearson, as it accounts for relative 



time shifts, local fluctuations of neural activity or noise, and the presence of periods 
without firing events (Cutts and Eglen 2014).

We chose to calculate STTC based on Δt values within [0 ,600] ms as the structure of 
the network is shaped by the relatioships between excitatory and inhibitory activity 
that show co-activation patterns within latency ranges in the ±600 ms interval, 
(Palagina, Meyer, and Smirnakis 2019) as well as based on GCaMP6 kinetics.(Chen 
et al. 2013)

Estimation of STTC 

To quantify the degree of correlation between firing events of two neurons A and B 
we used a modified version of the spike time tiling coefficient (STTC) (Cutts and 
Eglen 2014) which was originally defined as:

STTCA, B=
1
2
(
PA−T B
1−PAT B

+
PB−T A

1−PBT A
)(¿eq : sttcCutts)

where T A the proportion of the recording duration within an interval Δt  around 
each firing event of neuron A, PA the proportion of firing events of neuron A found 
within an interval Δt  around each firing event of neuron B, and likewise for T B and
PB. This correlation index is robust against varying firing rates and has only one free
parameter, the time window Δt . 

To incorporate the temporal order of the firing events of two neurons A and B, we 
developed the directional STTC:

¿

where T A+¿¿ is the fraction of the total recording duration within a time window Δt  
after each spike of A T B−¿¿ is the fraction of the total recording duration within a time
window Δt  before each spike of B, PA

B−¿
¿ is the proportion of firing events of A within 

a time window Δt  before each firing of B, and PB
A+¿

¿ is the proportion of firing events 
of B within a time window Δt  after each firing event of A. 

The directional STTC retains the desirable properties of the original STTC, while 
providing information on the temporal direction of correlation between two 
neurons. We will use the term “STTC” to exclusively refer to the directional STTC 
from here on. We chose to evaluate the STTC between neurons in our datasets with 
three different values for Δt  based on physiological considerations: {0 ,0.3 ,0.6 } secs.
As data from different mice were acquired with different sampling rates, we chose 
the integer number of frames for each mouse that came closest to the three different
parameter values. In all cases but one, the real Δt  value was equal to the target 
duration with a single significant digit precision. In the remaining case, one animal 



had its real frame duration closer to 0.5 than 0.6 with single significant digit 
precision.

To evaluate the extend to which the observed STTC values could arise by sequences 
with the same number of firing events without any temporal structure, we circularly
shifted the firing events of each neuron A by a uniformly sampled integer number of
imaging frames within the interval [1, n frames] 500 hundred times independently, 
where n frames the total number of imaging frames. From these 500 iterations we 
obtained a null distribution of STTC values for each pair of neurons.

The Z-score of each edge between neurons A and B is defined as

ZA , B=
STTC A, B

obs
−STTC A ,B

null

σ A ,B
null (¿ eq : zScore)

The Z-score quantifies the distance of the observed STTC value, STTCA, B
obs , from the 

mean of the null STTC distribution, STTCA, B
null  which should be close to 0, in units of 

standard deviations of the null STTC distribution, σ A, B
null .

To evaluate the overall trend of the percentage of edges above different Z-score 
thresholds and with different Δt  values we fitted the model described in Equation 
(4):

oi ∼Binomial(ni , pi)
logit ( p i) ¿ α+aFOV i

+β1Δ ti+β2Threshold i+β3(Δt i⋅Threshold i)

α ∼Normal(3 ,1)
aFOV ∼Normal(0 , σFOV )
σ FOV ∼StudentT (3 ,0 ,3)
β1 ∼ StudentT (3 ,0.1 ,3)
β2 ∼ StudentT (3 ,−0.1 ,3)
β3 ∼StudentT (3 ,0 ,3)

(¿eq : pcEdgeBinomialModel)

Graph theoretical analysis

Each FOV’s network was represented as a graph G(N , E), where N  the set of the 
graph’s nodes and E the set of the graph’s edges, with a square adjacency matrix A 
whose each element α i , j was a boolean value, with 1 if neurons i , j were connected 
and 0 otherwise. We assigned α i , j values based on whether the observed STTC value
exceeded each Z-threshold. This matrix was symmetrical when graphs were 
considered as undirectional, with α i , j filled with 1 if either Ei→ j or E j→i existed, 
i.e. had an STTC value greater than the Z-threshold. For directional graphs, α i , j were 
filled with 1 if, and only if, Ei→ j existed.



The undirected degree of node i was defined as

k i=∑
j∈ N

α ij (¿eq :undirectedDegree)

and the directed in- and out-degree as:
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The undirected shortest path length between nodes i and j was defined as:

lij= ∑
α ij∈ gij

α ij (¿eq :undirectedPathLength)

where gij is the shortest path between i and j . The shortest path lengths of 
disconnected pairs were set to ∞ and were excluded from calculations of summary 
statistics on the shortest path lengths among nodes of the same graph.

The undirected clustering coefficient of node i is defined as

C i=

∑
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and the directed clustering coefficient of node i is defined as
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For all graph theory analysis, only connected components with ¿2 nodes were 
considered.

A graph follows a small-world topology, if it has a large clustering coefficient that is 
close to that of an equivalent lattice network but a small average shortest path as 
should an equivalent random network (Watts and Strogatz 1998). In order to 
evaluate the extend to which the network of each FOV follows the small-world 
topology, we calculated three small-world indices that can be found in the literature:

σ=

C
C r

L
Lr

(¿ eq :swiHumphries)

where C  the clustering coefficient of the observed data, C r the clustering coefficient 
of the shuffled graphs, L the average shortest path of the observed data, and Lr the 
average shortest path of the shuffled graphs (Humphries and Gurney 2008),



ω=
Lr
L

−
C
C l

(¿eq : swiTelesford )

where C l is the clustering coefficient of an equivalent lattice graph (Telesford et al. 
2011), and

ν=
L−Ll
Lr−Ll

×
C−Cr
C l−C r

(¿eq : swiNeal)

(Neal 2017).

Shuffled graphs were produced based on the Erdös-Rényi topology using the same 
number of nodes and edges as each of the connected components of the observed 
graphs, ¿N∨¿ and ¿ E∨¿, while the IDs of each of an edge’s pair of nodes where 
uniformly assigned with self-connections disallowed, 100 times independently. 
Lattice graphs were generated according to the ring lattice topology, in which each 
node was connected with an equal number of neighbours, by progressively filling 
the k-diagonals and corners of an empty graph’s adjacency matrix, until the total 
number of edges matched or exceeded that of the observed graph. A pruning step 
followed to reduce the number of edges to that in the observed graph, by uniformly 
selecting a number of edges to extinguish equal to the excess of the intermediate 
adjacency matrix’s number of edges compared to the observed. Only for connected 
components for which ¿ E∨≥∨N∨¿ held was the ring lattice construction 
attempted.

Basic description of the data

Number of mice, FOVs, OGB/GCaMP, average/range frame duration, average/range 
recording duration Measurements: average/range firing rate, average/range 
number of neurons per FOV In OGB mice there were average/range number of 
interneurons

Performance Analysis

The following paragraphs present each main finding with plots that support it.

1. Statistically significant STTC values and edges.

Based on the STTC measure of correlation, we identified inter-neuronal connections 
at different magnitudes of correlation. To examine whether the observed STTC 
values can be explained by random correlations between neurons that fire the same 
number of events as those observed, we circularly shifted the event trains of one 
each pair’s neurons by a uniformly random number of imaging frames. The resulting
null distributions had a mean STTC of ≈0 and spread very little compared to the 
observed distributions (Figure 1). The observed distribution had most of its density 
occupy positive STTC values, up to about 0.3. 



The observed distribution had most of its density occupy positive STTC values, up to
about 0.25. In the example animal that is shown in Figure 1 the median was ≈ 0.034 
and 4% of values were >0.1.

Figure 1: Observed versus circularly-shifted STTC distributions for an example 
animal: The blue line corresponds to the STTC distribution obtained from the 
observed data and the black lines to the STTC distribution from 10 randomly-sampled 
distributions out of the 500 total distributions obtained by circularly-shifting the 
observed event trains. The STTC was calculated with the same Δt ≈0.3 for both 
distributions.

2. The extend to which the observed STTC differs from the null 
distribution depends on the size of the temporal integration window.

In order to translate each edge’s STTC values to a range that signifies deviation from
the null distribution as defined above, we calculated the Z-score of the observed 



STTC values with respect to the null’s mean and standard deviation. The 
relationship between STTC and its Z-score was linear for all Δt  tested (Figure 2). As 
the parameter Δt  increases, the slope of the correlation decreases, since the 
differences between the observed and the null STTC values are less pronounced for 
higher Δt . In addition, the variance of the STTC Z-score is increased as the STTC is 
increased, leading to heteroscedasticity, which is more pronounced for higher 
values of Δt . These findings indicate that inter-neuronal correlations can be better 
estimated using shorter windows of temporal integration.

Figure 2: STTC versus its Z-score by Δt  for an example mouse.

3. Robust identification of edges for sufficient recording durations.

We examined the robustness of the STTC estimation in time by artificially 
considering increasingly larger recording durations of the whole recording duration
we had available. In Figure 3 we see that the observed STTC for increasingly larger 



recording durations appears relatively stable across recording durations for each 
FOV (Figure 3). We also found that more than 75% of edges were between the same 
nodes when comparing consecutively increasing sizes of windows larger than 9 
minutes for most fields of view (FOVs) across all Z-thresholds, a result that did not 
appreciably differ when using Δt ≈0 or ≈0.3 seconds (Figure 4). The fact that both 
the STTC values and the identities of the nodes between which edges are formed 
remain stable as we consider increasingly larger recording durations provides 
evidence that the majority of edges we report are reliably detected.

Figure 3: Median STTC by window size and Δt : Window sizes were selected to 
maximize the number of times each animal is included.



Figure 4: Percent of edges above threshold by window size and Δt : Window sizes 
were selected to maximize the number of times each animal is included.

Parameters

4. The network manifests structure beyond what is expected by its 
number of events within the recording period irrespective of how high 
we set the correlation threshold for the existence of an edge.

As an estimate of network stability, we calculated the percent of edges that have an 
STTC value above increasing values of the STTC’s Z-score. We expected this 
percentage to be larger than that calculated based on the null distribution and to 
drop smoothly as we increased the Z-threshold. The percent of edges above 
threshold as the threshold increases does not change appreciably for different 
values of Δt  assuming a linear model, although there is a higher percentage of edges 



for thresholds ⪆4  for Δt ≈0.3 compared to both Δt=0 and Δt ≈0.6 sec (
0.055±0.014 ,mean±95%CI  for Δt ≈0.3vs Δt≈ 0.6, Figure 5). The average inflection 
point of percentage of edges drop is at Z-threshold of ≈4.8 and is found to be larger 
than that calculated based on the null distribution for all thresholds (Figure 6). 
From this evidence, we can conclude that more edges, compared to what is expected
by an equal number of events randomly shifted in time, can be found for any 
correlation level up to which we choose to restrict the network. This indicates that 
the majority of edges assigned based on firing event correlation are integral parts of 
the network structure whose existence cannot be explained by a distribution of the 
same number of events in time that does not respect the existing correlations, and 
that this is the case irrespective of the correlation threshold we choose. The fact that
a higher percentage of edges persists for a temporal integration window of 300 ms 
compared to windows of 0 or 600 ms leads us to speculate that the former is a more 
physiologically relevant period for neuronal integration.



Figure 5: Percent of edges above different thresholds by Δt : The dashed lines 
represent the median percentage of edges above different thresholds for the synthetic 
values, which are equal for all FOVs up to the third decimal point and close to the 
percentiles of the Normal distribution. The model is specified in equation (4).



Figure 6: Percent of edges above threshold by Δt : The dashed lines represent the 
median percentage of edges above different thresholds for the synthetic values, which 
are equal for all FOVs up to the third decimal point and close to the percentiles of the 
Normal distribution. The model is specified in equation (4).

4. No apparent hubs based on the degree distribution; Networks do not resemble
Erdös-Rényi networks based on the average path length and the average clustering
coefficient

A basic characteristic of a network is its degree of connectivity distribution, which 
provides a description of how many edges each node has within the network. 
Typically, a hub is a node with a degree of connectivity significantly larger than the 
mean degree of connectivity. The observed degree distributions in the neuronal 
networks we recorded have no overlap for positive Z-thresholds with those 



produced based on the shifted firing events, which only reach to degrees up to 4  
(data not shown). Hence, the number of edges is at least an order of magnitude 
more that those we would expect due to correlations between neurons with the 
same number of firing events we observed but without the observed temporal 
structure. The degree distribution of the observed network is heavily shaped by the 
choice of Z-threshold, ranging from a distribution with most nodes having a large 
degree for low thresholds to most nodes having a small degree for high thresholds 
(Figure 7). For thresholds for which the network was not fully connected, as 
exhibited by degree distributions that are not concentrated around the largest 
possible number of edges, the degree distribution did not resemble an equivalent 
Erdös-Rényi (ER) network (Figure 8). This indicates that there were proportionally 
more neurons with fewer as well as with more connections than expected in an 
equivalent ER network. 

However, there is an apparent lack of “hub”-neurons, i.e. those that would exhibit a 
distinctly larger degree compared to the rest of the population.

Given the unstructured connectivity the ER network is built on, it is possible in such 
a network to reach any node starting from any other node with relatively few edge 
crossings. We can quantify this network property as the average shortest path 
length, i.e. the average number of edges between each node and all other nodes of 
the network. Since we constructed the equivalent ER networks based on the number
of nodes and edges of the observed networks but without any information regarding
the inter-node correlation, we should expect that the average shortest path will 
monotonically increase as we increase the threshold. Both the observed and their 
equivalent ER networks are characterized by relatively short average shortest path 
lengths for low Z-thresholds (Figure 9). However, as the threshold increases, the 
average shortest path length of the equivalent ER networks increases with a higher 
rate compared to the observed network (Median average shortest path length for 
observed: 1.90, simulated: 2.77) and this was true for all fields of view (FOV)/mice, 
as can be observed by inspecting the median average shortest path length for the 
observed and the equivalent ER networks across thresholds for all FOVs (Figure 10).
This indicates that the observed networks contain enough nodes that are highly 
correlated with many other neurons to act as “bridges” between neurons that are 
themselves not connected with each other. Both the observed and the equivalent 
networks show a sharp drop of their median average shortest path after they reach 
their peak, as the number of nodes is reduced so much that most nodes can be 
connected with each other simply due to the small number of nodes.

Another important parameter of a network is its average node clustering coefficient,
which quantifies the percentage of a node’s neighbours that are connected. 
Equivalent ER networks should have a relatively small average clustering coefficient
that should drop monotonically as the Z-threshold, and hence the number of nodes 
and edges, is decreased. We observe that for all FOVs/mice we examined the 
average clustering coefficient of the observed networks falls at a relatively slow rate
compared to their equivalent ER networks, and in some cases even stabilizes or 
increases (Figure 11). This evidence suggests that the observed networks are more 



tightly connected compared to their equivalent ER networks. In FOVs/mice where 
the average clustering coefficient stabilizes or increases, it signifies that the network
possesses a core of highly correlated neurons, which are not encountered in 
equivalent ER networks.

(ref:degreeCDFUndirectedByFOVAndThresholdPlot) Undirected degree CDF per 
FOV by Z-threshold for all animals: The data presented were processed with
Δt=0.3.

Figure 7: (ref:degreeCDFUndirectedByFOVAndThresholdPlot)

(ref:exampleMouseUndirectedDegreeWithShuffled) Undirected degree CDF per 
FOV by Z-threshold for an example animal: The data presented were processed 
with Δt=0.3.



Figure 8: (ref:exampleMouseUndirectedDegreeWithShuffled)



Figure 9: Average shortest path length for an example mouse compared with 
shuffled edges networks: The STTC has been calculated with Δt ≈0.3.



Figure 10: Median undirected shortest path length per FOV by Z-threshold: The 
coloured CDFs represent the observed data and the corresponding CDFs (N = 100) 
generated by an equivalent Erdös-Rényi network (equal number of nodes and shuffled 
edges) are shown in black. The data presented, for both observed and shuffled data, 
were processed with Δt ≈0.3.



Figure 11: Median undirected node clustering coefficient with shuffled: The 
coloured lines represent the observed data and the corresponding lines (N = 100) 
generated by an equivalent Erdös-Rényi network (equal number of nodes and shuffled 
edges) are shown in black. The data presented, for both observed and shuffled data, 
were processed with Δt=0.3.

Small-worldness in the observed networks.

The observed networks display properties that cannot be found in equivalent ER 
networks: degree distributions with more variance, shorter average shortest path 
lengths, and larger clustering coefficients. These properties can be found in so-called
“small-world” networks (Watts and Strogatz 1998) that can be created by rewiring a
proportion of edges of a network based on a fixed probability of rewiring, p. At the 
one extreme, when the Watts-Strogatz algorithm starts with a highly regular 



network such as a ring lattice network where each node is connected with an equal 
number of its closest neighbours, each node has high clustering coefficient and large
shortest path lengths. If p=1, all edges will be rewired to connect uniformly selected
nodes, resulting in “random” ER networks, where each node has small clustering 
coefficient and small average shortest path lengths, provided that there are enough 
nodes in the network. For a range of intermediate values for p, an interesting 
phenomenon occurs, where the network is able to retain the lattice’s high clustering
coefficient to a large extend while it also reaches a small average shortest path 
length similarly to the ER network. Networks in this regime are called small-world 
networks, and are thought to arise spontaneously under certain conditions leading 
to robust self-organization.

To quantify the small-worldness of the observed networks, we employed the ω 
small-world inxex (Telesford et al. 2011). The basic idea behind this index is to 
compare the observed clustering coefficient and shortest paths with those of 
reference lattice and “random” networks, against which to assess the network’s 
regularity and lack of structure, respectively. When ω is close to 0, the network is 
considered small-world. When it is negative, it approaches closer to the lattice 
network used and when it is positive, it approaches closer to the “random” network 
used. In our case, all FOVs display ω values that are typically positive but always 
smaller than those obtained by the equivalent ER graphs for all thresholds tested for
which they diverge, indicating that the observed graphs display more structured 
connectivity patterns than expected for equivalent ER networks, a result that was 
confirmed with two other small-world indices [LINK TO APPENDIX].



Figure 12: Small world index ω over thresholds: The simulated shuffled graphs 
were generated based on the original data processed with Δt ≈0.3. The random graph 
used is constructed using the Erdös-Rényi algorithm and the lattice is a ring lattice. 
Each colour line is calculated using the observed data and the mean clustering 
coefficient of all shuffled graphs. Each black line uses each of the shuffled graphs 
instead of the observed data. The text within each panel plot area indicates the 
number of connected nodes per threshold. For visual clarity, every other number has 
been skipped where they would overlap.



Differences between mice/ mesoscope

Equivalent results can be confirmed from recordings of a large L2/3 
neuronal population in an awake mouse

The number of neurons we recorded from some mice of those we presented so far 
appeared to be limited, as shown by the fact that many neurons exhibited the 
maximum possible degree, even when setting high Z-thresholds (Figure 7). A 
further limitation may have been that all the animals were anaesthetized during the 
recordings. We thus confirmed our previous findings with mesoscopic data, from 
awake mice where we recorded thousands of neurons, thus expecting that the 
influence of both limitations will be alleviated. The mesoscopic data include 
recordings of 5205 neurons from layer (L)2/3 from mouse V 1. The median
STTCΔt ≈0.3 value for this animal was ≈0.01 with ≈8% of values ¿0.1. In this mouse as 
well, we see that the degree distribution displays differing proportions of low- and 
high-degree nodes, based on the applied Z-threshold (Figure 13). Predictably, the 
clustering coefficient distribution is shifted to lower values and the average shortest
path distribution is shifted to higher values as we increase the Z-threshold. For this 
mouse as well, we wondered how much different the observed network is compared
to an equivalent ER network. As with all other mice, the observed average clustering
coefficient was larger than that of the ER network for all thresholds tested (Figure 
14). Similarly, the median shortest path length of the ER network increased at a 
higher rate compared to the observed network (Figure 15). Following this evidence, 
we found that the ω small-world index for this network as well was kept below that 
of the ER network (Figure 16), indicating that the observed network follows closer 
the small-world topology compared to the ER network.



Figure 13: Graph metrics for mesoscope L2/3 network: A) Undirected degree CDF, 
B) Undirected clustering coefficient CDF, C) Undirected average shortest path CDF. For
these calculations, paths greater than 100 edges were set to infinite distances to 
reduce computation time and hence were excluded from this distribution plots. 
However, all neurons for which the average shortest path is not defined have a degree 
of 0 so this cut-off should not affect the results.



Figure 14: Median clustering coefficient from mesoscope L2/3 data with shuffled 
graph: The black line represents the results of the observed graph and the grey lines 
those from 10 equivalent shuffled graphs.



Figure 15: Median average shortest path from mesoscope L2/3 data with 
shuffled graph: The black line represents the results of the observed graph and the 
grey lines those from 10 equivalent shuffled graphs.



Figure 16: Small world index ω over thresholds for mesoscope data: The coloured 
line represents the observed data and the grey lines the 10 shuffled graphs.

Survival by degree

The lack of clear hub neurons raises the question of which neurons sustain the 
small-world network. To investigate this, we plotted the survival of individual nodes
that were sorted according to their degree as we increase the Z-threshold (Figure 
17). As expected, we can first observe that high-degree neurons tend to be those 
that survive up to the highest threshold. Additionally, we observe that node 
clustering coefficient correlates with node degree, with high-degree neurons 
tending to have high clustering coefficient as well. It is interesting, however, that as 
the threshold increases the neurons with the highest clustering coefficient are not 
those with the highest degree but those that are rather close to the median degree. 
High-degree neurons also tend to have the smallest average shortest paths. Those 



neurons with intermediate degrees and high clustering coefficients display 
increasingly large average shortest paths, until they run out of strongly correlated 
connections as we increase the threshold.

It appears, then, that neurons with intermediate clustering coefficients are well-
connected in small neighbourhoods but less so with the rest of the network, as 
indicated by their increasing average shortest path as the Z-threshold increases. In 
contrast, the nodes of highest degree, may not participate in the most tightly 
connected networks, perhaps also as a consequence of their high degree, but at least
some of their connections are formed by edges of high correlations. However, the 
network as a whole was, in this example case, contained within one connected 
component for all Z-thresholds. The above results are also observed with data from 
other mice and are largerly confirmed with the mesoscope data as well (Figure 18).



Figure 17: Node survival at increasing thresholds for mouse saad16_003: The 
nodes in all panels are sorted according to their degree for each successive threshold 
and each row represents one node. A black line denotes absence.



Figure 18: Node survival at increasing thresholds for the mesoscope mouse: The 
nodes in all panels are sorted according to their degree for each successive threshold 
and each row represents one node. A black line denotes absence.

Discussion

Summary
• There is temporal structure in the data

• The temporal structure is more obviously manifested with shorter time-scales (
Δt)



• The temporal structure manifests irrespective of the correlation scale at which 
we choose to look at the network

• At high-correlation scales the networks are not well-described by the ER 
topology but rather resemble a small-world topology with no apparent hubs

• The observed small-world topology is subsisted by a sub-group of neurons 
which are tightly connected in almost all-to-all neighbourhoods

Conclusions

We analyzed spontaneous L2/3 cortical activity through calcium imaging of large 
neuronal populations. The STTC-based method of correlation estimation robustly 
identifies correlated pairs of neurons. Although, on average, there is little correlation 
between neurons, cortical networks display considerable temporal structure at all 
correlation thresholds. Within a range of temporal integration windows, correlation 
saturates for windows ~300ms, in agreement with the literature (Smith and Kohn 2008).
The observed networks tend to have smaller average shortest path lengths and larger 
average clustering coefficients compared to equivalent reference networks with shuffled
edges, manifesting small-world architecture. These trends persist at various correlation 
thresholds. Furthermore, the presence of sub-groups of tightly-connected neurons 
indicating that cortical networks are built based on a modular structure.
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